|
''Revolutions in Mathematics'' is a collection of essays in the history and philosophy of mathematics. ==Contents== *Michael J. Crowe, Ten "laws" concerning patterns of change in the history of mathematics (1975) (15–20); *Herbert Mehrtens, T. S. Kuhn's theories and mathematics: a discussion paper on the "new historiography" of mathematics (1976) (21–41); *Herbert Mehrtens, Appendix (1992): revolutions reconsidered (42–48); *Joseph Dauben, Conceptual revolutions and the history of mathematics: two studies in the growth of knowledge (1984) (49–71); *Joseph Dauben, Appendix (1992): revolutions revisited (72–82); *Paolo Mancosu, Descartes's Géométrie and revolutions in mathematics (83–116); *Emily Grosholz, Was Leibniz a mathematical revolutionary? (117–133); *Giulio Giorello, The "fine structure" of mathematical revolutions: metaphysics, legitimacy, and rigour. The case of the calculus from Newton to Berkeley and Maclaurin (134–168); *Yu Xin Zheng, Non-Euclidean geometry and revolutions in mathematics (169–182); *Luciano Boi, The "revolution" in the geometrical vision of space in the nineteenth century, and the hermeneutical epistemology of mathematics (183–208); *Caroline Dunmore, Meta-level revolutions in mathematics (209–225); *Jeremy Gray, The nineteenth-century revolution in mathematical ontology (226–248); *Herbert Breger, A restoration that failed: Paul Finsler's theory of sets (249–264); *Donald A. Gillies, The Fregean revolution in logic (265–305); *Michael Crowe, Afterword (1992): a revolution in the historiography of mathematics? (306–316). 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Revolutions in Mathematics」の詳細全文を読む スポンサード リンク
|